ELECTRIC SIMULATION OF NONLINEAR PROBLEMS IN
HEAT AND MASS TRANSFER

N. A, Fridlender UDC 681.142.334:536 .24

A method is described for the electric simulation of nonlinear heat- and mass-transfer prob-
lems on two resistance networks. The temperature is simulated on one network and the mass-
transfer potential on the other. The mass-transfer potential has a discontinuity of the first
kind because of a moving zone boundary on which intense phase transitions ocecur.

1. In the electric simulation of the nonlinear equations of heat and mass transfer
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A method for the electric simulation of such a system of nonlinear equations was presented by L, A,
Kozdova in [2] and in more general form in [3]. The continuous-medium electric simulator consists of
two networks of ohmic resistors (Fig. 1). In network a the electric potential V simulates the temperature
t{t = NtV); in network b the electric potential W is proportional to the moisture content u-= NyW. The heat
flux jg and the mass flux jy, are proportional to the network currents
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The difference equations (2) are simulated on the networks by relations obtained from Kirchhoff's law:
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2. These network simulators can also be used to solve more complicated problems such as the
simulation of the drying of a porous medium with a moving surface of intense evaporation.

We consider a one-dimensional problem where the position of the surface of intense evaporation is
determined by a single coordinate (7). The velocity of the surface is 1 = dn/dt. The thermophysical
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Fig. 1. Circuit diagrams of separate sections simulating a one-
dimensional heat- and mass-transfer problem. I-I simulates {
and II-II simulates u.

characteristics A, ¢, Ay, Cs O and ¢ depend on both t and u in general, They are discontinuous at the
boundary x = 5. Relatively simple methods of electric simulation taking account of the propagation of a
phase transition front are given in the literature {4] for the case of a single unknown function and constant
thermophysical parameters. Since there is a large variation of thermophysical characteristics during the
drying process the use of such constant parameter models gives a very crude approximation,

We present an electric simulator for solving the set of differential equations (1) for two funetions u
and t with a moving surface of intense evaporation, i.e., with a discontinuity in the function u at x = 7.

We first find the velocity n at time 7 for known distribution laws t(x) and u(x) at that instant. To
this end we consider a thin layer with coordinates 5 —0 and 5 + 0 in the vicinity of the moving surface where
the intense phase transitions occur. We determine the amount of heat entering the elementary layer per
unit time [5]. The heat fluxes entering the layer due both to the nonuniform temperature distribution and
to the motion of the layer through a medium with a different heat content are

(— Ayt — eyt n—o — (— AVt — cvit)nto. (5)
Similarly the total amount of moisture entering the thin layer per unit time is
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We denote by E the criterion of a phase transition, the ratio of the weight of liquid evaporated in the
layer under consideration to the total weight of liquid entering the layer (0 <E <1). The porous medium
contains capillaries of various diameters. It is assumed that the moisture in the largest capillaries
evaporates instantly as the boiling surface passes. The magnitude of E depends in general on the para-
meters t, u, Vi, and vu at x = 5 before and after the passage of the evaporation surface. The equation for
1 can be derived from the law of conservation of energy
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If the thermophysical characteristics A, Am, ¢, ¢y, 6, and E andthe parameterst, vt, u and vu are known
in front of and behind the evaporation surface the velocity of the surface can be calculated from Eq. (7).

The temperature of the medium is a continuous function of x and 7, but at the point x = 5 the partial
derivatives of this function have finite discontinuities; the moisture content has a discontinuity of the first
kind at the evaporation surface,

The equations of heat and mass transfer are simulated on two resistance networks. The first of
Eqgs., (1) takes the form
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where 5 is the Dirac delta functioh; Q, the amount of heat expended in evaporation per unit time in the
layer under consideration, is determined by Eq. (5). We construct a resistance network to simulate t
(Fig. 2a). We assume that at time T, the values of Ax and A7 are chosen in such a way that Ax/A7 is equal
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Tig. 2. Electric circuits for simulating a one-dimensional heat-
and mass-transfer problem with 2 moving surface of intense
phase transition.

to the velocity of the evaporation surface., This implies that in one step on the simulator the surface of
discontinuity x = 7 is displaced by one cell of the network.

We note that Ax and A1 can be considered constants for a small change in . In general, after each
step it is necessary to determine 1/ and A T — % Ax and to change the resistance Rt and RY by amounts
proportional to Ar. For a small At the position of the discontinuity can be displaced a large number of
cells,

Suppose the surface is in the position correspondingtothe terminal of the network I-I with potential
V,. In addition to the currents (VO—VO—AT)/RtT and V3/R} simulating the first terms in Egs. (8) it is
necessary to remove a current from the terminal at potential V, to simulate the loss of heat during the
time A7 due to evaporation in the moving layer during its displacement by Ax. This amount of heat can
be calculated by knowing the parameters u, t, Vu, and vt in the neighborhood of the discontinuity, i.e.
by determining them beforehand with the second network, The circuit diagram of network II-II simulating
u is shown in Fig. 2b. Since the function u is discontinuous at x = 5, this must correspond to a physical
discontinuity in the electric network, and at the position of the discontinuity we must obtain not one potential
but two, Won_o and W0n+0 . Each of the half networks (x < n; x> ) represents an independent boundary-

value problem, Since the layer we constructed where evaporation occurs {n—0, n + 0) has been removed,
and the terminals at potential W . and W°n+0 correspond to the boundary points of this layer, it is not
n—

necessary to assign special points to simulate boiling. However, the boundary conditions at (n —0) and
{n + 0) must be satisfied. This requires supplying currents proportional to the boundary heat fluxes to
the terminals at potentials Won_0 and W(,ﬂ 1o by connecting them to a high potential W, of the potentiometer

through the high resistances Ry, _, and Rr, ¢
W,
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justas is ordinarilydone in simulating conditions of the second kind;i, is determined similarly.
n40
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The simulation of a problem with a moving front on which the potential experiences a discontinuity
of the first kind requires a discontinuity in the network since the electric potential W varies continuously
in a continuous resistance network for any current sources.

On p. 241 of [1] are shown changes in temperature and moisture content of a typical porous body
(a ceramic plate 51 mm thick) when dried from both sides by infrared radiation. Periods of drying are
clearly visible on the temperature curves: an initial period of heating, a period of constant rate of drying
during which the temperature is practically constant, and the period we are interested in beyond the critical
point K, where sharp bends in the curves t = f(r) for x = const are clearly visible, These bends occur at the
instants the surface of intense evaporation passes through the given point. Since the derivatives 9t/97,
at/ax. . . experience discontinuities of the firstkind, Eqgs. (1) are valid outside the surface of intense evap-
oration, We have performed the electric simulation of transfer processes during an interval + = 360-534
min for the experiment indicated above, The thermophysical parameters were selected as in [6], At the
initial time 7 = 360 min the temperature was assumed constant, u(x) was considered distributed parabol-
ically, and the thermophysical coefficients ¢, A, and a,, were assumed linear functions of u; § = const.
The boundary conditions were simulated as described in [3].

The function t = f(1, x) obtained by electric simulation is in satisfactory agreement with the actual
experiment,

3. The solution of nonlinear heat- and mass-transfer problems on ohmic resistance networks is a
laborious and relatively prolonged operation, and therefore it is desirable to first obtain an approximate
solution by replacing the variable thermophysical characteristics A, ¢, a,, etc. by some average constant
values and simulating the process on an RC network [7, 8]. If a front of intense phase transition moves in
the medium, we transform to a moving coordinate system with origin at x = n and write (1) in dimensionless
coordinates for x < 5 [9]

T . oT  &T - 9 98
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In (10) the coordinate X is given in the moving system; n is dimensionless.

We consider the special case when T and @ depend only on X but not on Fo in the moving coordinate
system. Then (10) takes the form

2 . . .
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i.e. T and @ satisfy the same ordinary differential equation. The roots of its characteristic equation are:
k3 =0
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and the general solution has the form

T = Ay exp (kx) + A, exp (kyx) -+ Ay,
© = B, exp (kyx) - By exp (kyx) + Bs.

A similar solution can be obtained for X > 0. The velocity can be determined by the approximate
formula

dn —-gg-;— {1 —EKoPnlLu)
dFo \ Cm \'
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where Ko, Pn, Lu, and 8T/9X are given at X =—0,
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NOTATION

is the time;

is the temperature;

is the moisture content;

is the thermal conductivity;

is the volumetric heat capacity;

is the mass-transfer potential conductivity;

is the ratio of the change of mass due to phase transformation to the total change of mass;

is the latent heat of phase change;

is the thermogradient coefficient;

is the heat flux vector;

is the mass flux vector;

is the resistance carrying the current which simulates heat flux;

is the resistance carrying the current which simulates flow of moisture;

is the potential simulating temperature;

is the potential simulating mass-transfer potential or moisture content;

is the dimensionless temperature;

is the mass-transfer potential;

is the Fourier number;

is the Lykov number;

is the Kossovich number;

is the Posnov number;

is the relative change of mass due to phase transitions in the moving region of intense phase transi-
tion,
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